
K.A.R.L.®-PRO REPORT

NATURAL HAZARD AND RISK ANALYSIS

K.A.R.L.® analyzes are used exculsively for loss prevention and early detection of risks. They are based on scientific data, facts and correlations. They also take account of the potential damage leves that may arise as a function of the specific physical sensitivity of certain goods under external impact.

Loss statistics of the insurance industry are not included in the analyzes Therefore, risk figures calculated by K.A.R.L.[®] are not suitable as a basis for insurance premiums.

TASK

Task-ID: Christ the Redeemer, Brazil

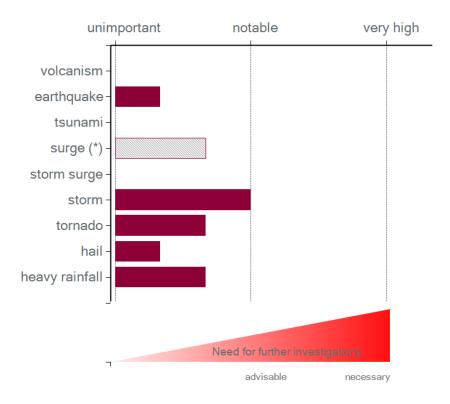
Analysis of location dated: 15.09.2025 10:40:04

by: KA Köln. Assekuranz Agentur GmbH

Version: 5.1.0.4

LOCATION UNDER SURVEY

Christ the Redeemer, Brazil


GEOGRAPHICAL SITUATION

Latitude / Longitude (decimal):	-22,951749 -43,210467
Estimated Elevation (m above sea level):	462,00
Elevation from Digital Elevation Model (m above sea level):	462,00
Type of Landscape:	low mountain range
Lowest Elevation within 1 km (m above sea level):	6,00
Highest Elevation within 1 km (m above sea level):	600,00
Approximate Distance to Coast (km):	3,0

This data was transferred partly automatically from a global digital elevation model, which is based on radar survey. Deviations from the real elevation are possible at places where the radar signal has been reflected by roofs or trees. (Source: NASA, SRTM V4)

The specified distance from the coast corresponds to the straight line to the nearest point of the elevation model, which has not been defined as mainland. Therefore, under certain circumstances also estuaries or large river mouths can be interpreted as marine areas.

SUMMARY OF THE RISK ANALYSIS

(*) There might be a risk of surge resulting from heavy rainfall (see Chapters 4 and 5)!

Location: Christ the Redeemer, Brazil

VULNERABILITIES AND VALUES AT RISK

Values at Risk

TOTAL (%): 100

This risk analysis concerns the following goods / facilities / buildings:

Büroimmobilie oder Geschosswohnungsbau, über 7 Etagen

RISK FIGURES

PERIL RISK as % p.a.

0,0000 (-)
0,0100 (very low)
0,0000 (-)
0,0000 (-)
0,0000 (-)
0,1141 (notable)
0,0531 (low)
0,0198 (very low)
0,1969 (notable)
0,0618 (low)

The risk analysis has been calculated considering the vulnerabilities (sensivity of the goods / facilities / buildings that could be threatened by the examined natural hazards) defined by the user mentioned below.

The risks detected by K.A.R.L.[®] are calculated by numerical modelling. First of all the potential losses are calculated for statistical return periods of between 1 and max. 10.000 years. From this a mean annual loss is deduced as a significant figure for the Risk at the location.

Example (simplified): Should a total loss of 1 Mio. EUR be expected due to flooding only once a century then the mean annual loss (= RISK) is 10.000 EUR p.a.. The identical risk would result from the occurrence of e.g. 4 single events causing damage of 0,1 Mio., 0,3 Mio., 0,4 Mio. and 0,2 Mio. EUR collectively. The average then is also 10.000 EUR p.a..

Regardless of the object's value the risk can be expressed as a yearly percentage which would be, in the above example, 1 % of the total value of the object per year (i.e. RELATIVE RISK).

It is possible that singular claims may significantly exceed the calculated risks. Therefore they are separately listed below together with the corresponding statistical return periods. The CAL-CULATED MAXIMUM LOSS states the highest possible single loss for each model calculated. For this figure no statistical return period will be given.

RECOMMENDATIONS AND FURTHER STEPS

Some risks have been identified as notable or above. Further investigations are necessary. Due to this it's recommended to clarify the following issues:

STORM AND/OR TORNADO:

Check if there are objects and /or building parts which can be torn down or blown about by storm and cause damage at site or its neighbourhood. Check further if the construction of the roof, doors, windows and gates can withstand a high wind pressure. If necessary experts must be contacted for further investigation. Clarify if there are any emergency and evacuation plans in case of catastrophy.

Last but not least there is a danger that, due to the regional climate conditions, drainage systems can become blocked by ice after a hailstorm and cause local flooding.

NOTES FOR INTERPRETATION

The calculated results by K.A.R.L.[®] and the statements in this report are to be considered as a guide only. They only INDICATE which perils can cause specific risks and where further action might be necessary. Their purpose is to prioritize further research and installation of protective devices. In no way can they replace a detailed and scientific analysis of the location itself by an expert.

Please note further: Is a risk identified and named, there is always an endangerment which, under certain circumstances, might cause severe damage. The classification of a risk as "VERY LOW" or "LOW" therefore only means, that such an extreme event occurs very seldom and not that it is impossible. Whether further protection is necessary even in a low risk situation depends on the value and the vulnerability of the goods at the location. Are the risks classified as "NOTABLE" to "VERY HIGH", further investigation of the situation is always advisable in order to define the level of risk more precisely.

Such an investigation can be conducted by a detailed analysis of the location (K.A.R.L.®-EXPERT) by our own experts if requested.

This risk analysis was generated automatically. It was not checked for plausibility by an expert. Certain facts only visible in maps, air or satellite reconnaissance pictures, which might have influenced the risk evaluation, could not be taken into account.

Please do not hesitate to contact us if you have any questions:

Team K.A.R.L.[®] (team.karl@koeln-assekuranz.com)

CLIMATIC CONDITIONS

Mean Annual Temperature:	20,5 °C
Coldest Month:	Jul. with 14,0 °C
Warmest Month:	Jan. with 28,0 °C
Number of days per year >= 20°C: (mean temperature)	280
Mean Elevation of Frost Line above sea level:	3061 m
Annual Precipitation:	1356 mm
Quarter with Maximum Precipitation:	D-J-F with 500 mm
Quarter with Minimum Precipitation:	J-J-A with 164 mm

The climate data given here are dynamically adapted to the respective current year on the basis of a climate model (NCAR Community Climate System Model (CCSM), Scenario A1b).

Theoretical Availability of Water: 419 mm p.a.

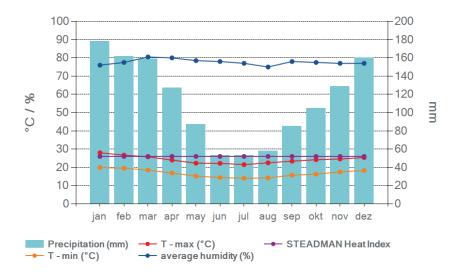
Explanation: The availability of water is calculated as the difference between the annual precipitation and the evaporation. Theoretically, this amount of water is available as surface water or replenishes the groundwater storage. At the location under survey the amount exceeds 200 mm p.a.. A water shortage is therefore not to be expected, except in extremely hot and dry years.

Index of Severe Weather: significantly increased (2,56)

Explanation: Köln.Assekuranz has calculated the index of severe weather using various climatic parameters. With this index the frequency and degree of severe weather can be compared to the conditions in Western Europe. The following Indices of severe weather are characteristic for certain regions: Stockholm: 0,6 London: 0,7 Cologne: 1,0 Munich: 1,3 Milan: 1,5 Osaka: 2,3 Hong-Kong: 4,2 Cayenne (French.Guayana): 5,1 West-Columbia: 11,7 Mumbay: 12,7

Explanation: NASA satellites observe the flash frequency globally. The following flash frequencies (number p.a. and km2) are typical for certain regions: Stockholm: 0,4 London: 1,0 Cayenne (French Guayana): 1,6 Cologne: 2,0 Munich: 2,0 Osaka: 4,7 Mumbay: 6,0 Milano: 12,0 Hong-Kong: 15,0 West-Colombia: 25,0

Only about 10 % of all registered flashes actually hit the ground.


Calculated maximum Snow Load (kg/m2):

0

No significant snow loads are to be expected from the given facts.

FOR THE STRUCTURAL DESIGN OF BUILDINGS ONLY SNOW LOADS ARE ALLOWED WHICH ARE PUBLISHED BY THE LOCAL AUTHORITIES. CONTACT YOUR MUNICIPAL BUILDING DEPARTMENT.

Climate Diagram

Explanation: The STEADMAN heat index reflects the perceived temperature in the higher temperature range. The long-term average values of real temperatures and humidity are included in his calculation. A perceived temperature of up to $26\,^\circ$ C is defined as not critical to health. At the location under survey, this value is never exceeded in any month. This means that a pleasant climate for Europeans can be expected throughout the seasons.

HAZARD AND RISK ANALYSIS

The following HAZARDS are recalculated by K.A.R.L.[®] for each individual evaluation on the basis of scientific data. Existing hazard maps (see section Data Sources) are only used for control and comparison purposes. The RISKS derived from the hazards also depend on local factors (terrain height, existing protective measures, building quality, etc.) and the vulnerabilities predefined by the user specified below (specific sensitivities of the potentially affected goods / plants / buildings to the natural hazards investigated).

1. Volcanism

No known recent volcanic activity within 200 km radius from the location under survey.

2. Earthquake

The site is located in an area where no or only a very low earthquake hazard is to be expected.

According to the KA standards and in consideration of the available data of registered earth-quakes within a radius of 300 km an automatic statistical analysis of the hazard and the risk is not possible. The number of documented earthquakes is too low. Since the strongest magnitude ever reported does not exceed Mw = 5 the risk is initially classified as very low. Further investigation is advisable.

3. Tsunami

Considering the elevation of the location of 462,00 m above sea level there is no need for examination. Tsunamis can be ruled out at the location under survey.

4. Surge (River Flood, Flash Flood, Drainage Failure)

The hazard analysis based upon the digital elevation model came to the following conclusion:

The location under survey is in a hilly or mountainous area with significant peaks and valleys. Here extreme precipitation can lead to flash floods or mud flows with a high potential of destruction. Such occurrences are very rare; however, should they happen the endangerment is especially high if the location under survey is situated in a valley bottom or on the lower part of a slope.

The location at an elevation of 462,00 m above sea level is 317,00 m higher than the maximum water level of 145,00 m above sea level calculated by K.A.R.L.[®] from the digital elevation model.

Under these conditions no immediate risk of surge can be identified from the given facts.

However, local floods can also be triggered by heavy rainfall events. The associated risk is discussed in the following section (Heavy Rainfall).

Apart from that due to the regional climate conditions there is a danger of hailstones or ice blocking the drainage systems and hereby causing local flooding.

NB: The exact elevation was not given, but is most important for a correct classification of the risk of surge. It is strongly recommended to find out the exact elevation and repeat this analysis.

5. Heavy Rainfall

Heavy rainfall is usually a relatively limited phenomenon and can also occur in flood-safe zones. Conversely, floods or flash floods can be caused by heavy rainfall events which occur far away from the investigated location, but do not hit it directly. The hazard locations of a heavy rainfall event and the associated flash flood are therefore not identical. Hence, K.A.R.L.[®] assesses flood and heavy rain risks separately, as these are independent risks.

Heavy rainfall can cause damage, which - unlike flooding - can occur under the influence of unfavorable conditions in the smallest possible space. In the first place, there is water inrush into cellars and underground garages as well as their entrances, inner courtyards closed on all sides, underpasses and small local depressions. All structures mentioned are often constructed and have only a small surface area. K.A.R.L.[®] is therefore unable to recognize them on the basis of the digital elevation models used. In addition, there is possible damage caused by the ingress of rainwater into buildings, vehicles and means of transport (wagons, containers, boxes, packaging foils, etc.) as well as impairments caused by washed out infrastructure systems.

Furthermore, the risk of being affected or damaged by heavy rain depends highly on the absorption capacity of the local sewage systems. Due to economic considerations, these are normally only designed for rainfall that occurs at statistical intervals of 3 to 10 years (design rainfall). A higher degree of protection is rare to find and is therefore not used in this context. If the design rainfall is exceeded, it results in overflow, the leakage of sewer water on the surface and the associated consequential damage.

A model developed by KA based on globally available climate data and calibrated on the basis of measured precipitation data from more than 1,700 weather stations worldwide is used to calculate the heavy rain hazard and the resulting risk. For each point on earth (except Antarctica), this model provides the approximate values of the maximum daily precipitation to be expected for return periods between 1 and 10,000 years.

Maximum Daily Precipitation (calculated by K.A.R.L.® model)

5-year (mm per day)	188
10-year (mm per day)	234
20-year (mm per day)	286
50-year (mm per day)	362
100-year (mm per day)	426
200-year (mm per day)	495
500-year (mm per day)	594
1000-year (mm per day)	676
MAX (mm per day)	985

There are no globally valid and comparable definitions of the terms design rain and heavy rain. What is perceived as heavy rain depends mainly on the regional climate. In addition, the local environmental conditions that make a heavy rainfall a damaging event can hardly be specified. Against this background, it is not possible to determine specific vulnerabilities on the one hand and, on the other hand, there is no global comprehensive information on the dimensioning of wastewater systems available. The following generalized assumptions are used in the present analysis:

- 1. The design rainfall is based on the local 5-yearly daily precipitation, to be stated as precipitation height in mm (from K.A.R.L.® rounded up or down to the nearest full 50 mm/day). The maximum design rainfall is assumed to be 250 mm/day. Furthermore, it is assumed that the design rainfall calculated by K.A.R.L.® is only included in the dimensioning of sewage systems with a probability of 25%. On the other hand, it is assumed with a probability of 75% that the design rainfall will hardly be higher than 100 mm/day.
- 2. Precipitation events below or at the level of the assumed design rainfall do not cause any damage.
- 3. Precipitation events exceeding the assumed design basis rainfall are regarded as heavy rainfall.
- 4. The factor by which a heavy rainfall of a given return period exceeds the assumed design rainfall is decisive for the potential degree of damage.
- 5. The highest possible damage is assumed by K.A.R.L.[®] if a heavy rainfall event produces 5 times the amount of precipitation of the assumed design rainfall. It is equated with the maximum damage which, according to the vulnerability used, applies to floods. Between the first exceedance of the design rainfall and the potential maximum value, an exponential increase in the loss potential is assumed.

On this basis, it is assumed in the present case that the local drainage systems at the investigated site are (or should be) designed for a design rainfall of 200 mm per day and that no damage from heavy rainfall is to be expected up to this precipitation level. Under the regional

meteorological conditions, precipitation can only be classified as heavy rain if it exceeds this value.

This results in the following risk figures.

Risk Figures Heavy Rainfall

Probable Maximum Loss, Return Period 50 years (%):	0
Probable Maximum Loss, Return Period 100 years (%):	1,8
Probable Maximum Loss, Return Period 200 years (%):	4,0
Probable Maximum Loss, Return Period 500 years (%):	10
Probable Maximum Loss, Return Period 1000 years (%):	10
Calculated Max. Loss (%):	10
Relative Risk (%/year):	0,0618

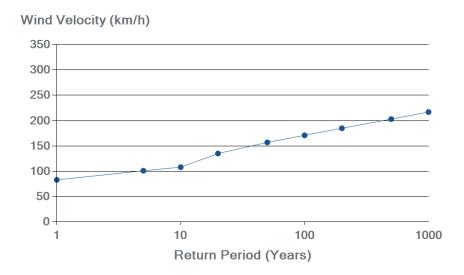
According to these conditions the risk of heavy rainfall is classified as low.

6. Storm Surge

Due to the local elevation of more than 10 m above sea level there is no need for examination. Storm surge can be excluded as far as humanly possible.

7. Storm

The site under investigation is located in a region where a mean storm hazard can be assumed.


The calculation of the storm hazard with K.A.R.L.[®] is based on KA's own analyzes of approximately 5000 weather stations worldwide. These stations provide relevant long term measurements of local wind speeds. In this context, no distinction is made between tropical cyclones and extratropical storms. Furthermore, we used the digital elevation model to examine whether the landscape morphology around the location might influence the maximum wind speed to be expected there.

Wind forces of >= 8 Bft (>=72 km/h) might occur several times a year, according to the statistical analysis of the data. A 100 year storm event would mean a local maximum wind speed of 171 km/h.

Frequency of Storms

The following diagram shows the wind speed of the maximum expected strong gusts depending on their individual return periods. Wind speeds are classified as follows: storms 89-102 km/h,

severe storms 103-117 km/h, gales and tropical storms 118-177 km/h; severe tropical storms > 178 km/h

Vulnerability Storm

The vulnerability has been defined as loss percentage depending on the possible wind speed at the location under investigation and refers to "Büroimmobilie oder Geschosswohnungsbau, über 7 Etagen". It has been used to calculate the following risk figures.

	•				
very low	low	mean	increased	high	very high

Risk Figures Storm

Probable Maximum Loss, Return Period 50 years (%):	1,5	
Probable Maximum Loss, Return Period 100 years (%):	3,1	
Probable Maximum Loss, Return Period 200 years (%):	4,6	
Probable Maximum Loss, Return Period 500 years (%):	7,3	
Probable Maximum Loss, Return Period 1000 years (%):	8,9	
Relative Risk (%/year):	0,1141	

For further explanations see section RISK FIGURES.

According to these conditions the risk of storm is classified as notable.

8. Tornado

The site under investigation is located in a region where only a very low tornado hazard can be assumed.

The calculation of the hazard of tornados by K.A.R.L.[®] is based upon regional climatic parameters and geographical factors. Furthermore, within the model it was considered that large plains or slightly hilly landscapes would favour the occurrence of tornados. On the other hand, a strongly varied landscape prevents the formation of tornados or only permits tornados of a short duration. The model was calibrated using meteorological and climatic data from the USA. (Source: NOAA).

Therefore, in the region of the location under survey the statistical probability of 0,5310 severe tornados p.a. is to be reckoned with on a reference area of 10.000 square km as a worst case.

Furthermore, it was presumed that significant damage only occurs when the location is directly hit by a tornado. In this case total loss is to be expected. A tornado normally only has a width of 500 m and hence, even in an area with a high hazard of tornados a direct hit occurs seldom. Therefore, in comparison to other natural risks the calculated tornado risks are generally relatively low.

The definition of vulnerability regarding tornados is based on a maximum loss potential of 100 %.

Risk Figures Tornado

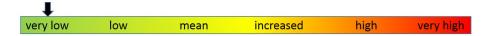
Calculated Max. Loss (%):	100
Relative Risk (%/year):	0,0531

For further explanations see section RISK FIGURES.

According to these conditions the risk of tornados is classified as low.

9. Hail

The site under investigation is located in a region where a very high hazard of hail can be assumed.


The calculation of the hazard of hail by K.A.R.L is based upon a model developed by KA. Regional climatic parameters were analysed whether they favour or hinder the formation of hail or how their effects might be mutually cancelled out. Furthermore, since hail is mostly coupled with thunderstorm, the frequency of flashes has been included in the model. The model was calibrated using meteorological and climatic data from the USA. (Source: NOAA).

Therefore, hailstones with an average diameter of 2,0 \pm 1,0 cm have to be reckoned nearly every year, 3,4 \pm 1,1 cm with about every 10 years and hailstones with an average diameter of 5,1 \pm 1,2 cm have to be reckoned with about every 100 years.

No hail protection measures have been given. This information has been taken into consideration in the following risk analysis.

Vulnerability Hail

The vulnerability has been defined as loss percentage depending on the mean diameter of the hailstones and refers to "Büroimmobilie oder Geschosswohnungsbau, über 7 Etagen". It has been used to calculate the following risk figures.

Risk Figures Hail

Probable Maximum Loss, Return Period 50 years (%):	0,30	
Probable Maximum Loss, Return Period 100 years (%):	0,60	
Probable Maximum Loss, Return Period 200 years (%):	1,2	
Probable Maximum Loss, Return Period 500 years (%):	1,9	
Probable Maximum Loss, Return Period 1000 years (%):	2,3	
Calculated Max. Loss (%):	3,9	
Relative Risk (%/year):	0,0198	

For further explanations see section RISK FIGURES.

According to these conditions the risk of hail is classified as very low.

METHODOLOGY

The risk and hazard classifications determined by K.A.R.L.[®] are based on globally available geological, geographic and meteorological data sets that are stored, continuously maintained, extended and specified at KA. The methods of calculation are constantly being improved and adapted to the state of knowledge. Hence, the results refer solely to the state of knowledge at the time of this report.

The calculation methods are not based upon past claim events, they are only verified by them. This guarantees that the modelling of risks follows scientific principles and is not influenced by a random and sometimes incomplete collection of claim data.

Any missing or incomplete data is supplemented in the best plausible way by special estimation procedures developed by KA. These procedures follow generally the WORST CASE PRINCIPLE. Therefore, risk evaluations with a large amount of estimated parameters may lead to higher risk results.

IMPORTANT NOTICE:

This risk analysis was generated automatically. It was not checked for plausibility by an expert. Certain facts only visible in maps, air or satellite reconnaissance pictures which might have influenced the risk evaluation, could not be taken into account.

SOURCES OF DATA

A.Jarvis, H.I.Reuter, A.Nelson, E.Guevara, 2008, Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT)

Giardini, D., Grünthal, G., Shedlock, K. M. and Zhang, P.: The GSHAP Global Seismic Hazard Map. In: Lee, W., Kanamori, H., Jennings, P. and Kisslinger, C. (eds.): International Handbook of Earthquake & Engineering Seismology, International Geophysics Series 81 B, Academic Press, Amsterdam, 1233-1239, 2003

KA Köln. Assekuranz Agentur GmbH, our own data source and investigations

Munich RE, "topics" (various editions)

NASA - Global Hydrology Resource Center (GHRC)

NCAR GIS Program. 2012. Climate Change Scenarios, version 2.0. Community Climate System Model, June 2004 version 3.0. http://www.cesm.ucar.edu/models/ccsm3.0/ was used to derive data products. NCAR/UCAR. URL: http://www.gisclimatechange.org. Data Access Date june 2017

NOAA - National Geophysical Data Center (NGDC)

NOAA - National Climatic Data Center (NCDC)

Smithsonian Institution (Washington), Global Volcanism Program

Stive, Marcel J.F. et al, How the Dutch plan to stay dry over the next Century, published in ICE-Civil Engineering (164) 2011, CE3, pp 114-212, ISSN0965 089X

U.S. Geological Survey, Department of the Interior/USGS

Van Dantzig, D. (1956) Economic decision problems for flood prevention, Econometrica 24(3): 276–287

Yongcun Cheng, Ole Baltazar Andersen, (2010). Improvement in global ocean tide model in shallow water regions. Poster, SV.1-68 45, OSTST, Lisbon, Oct.18-22

Data from the given sources are only evaluated and interpreted by KA. No data is passed on to third parties.

IMPRINT

KA Köln. Assekuranz Agentur GmbH

Scheidtweilerstr. 4

50933 Köln

Tel.: +49 (221) 3 97 61 - 200

Fax: +49 (221) 3 97 61 - 301

info@koeln-assekuranz.com

www.koeln-assekuranz.com

© 2025

KA Köln. Assekuranz Agentur GmbH